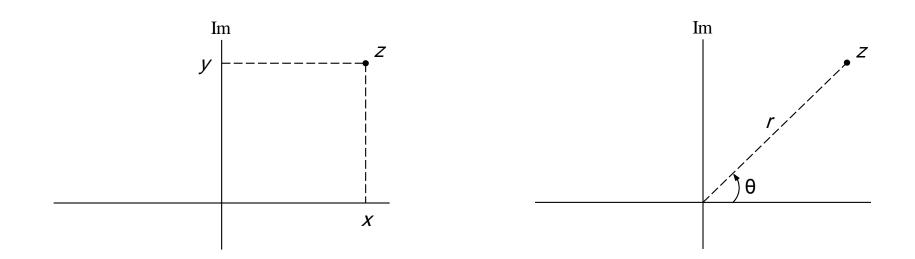
- Since $\theta^{i\theta} = \theta^{i(\theta + 2\pi k)}$ for all real θ and all integer k, the argument of a complex number is only uniquely determined to within an additive multiple of 2π .
- The principal argument of a complex number Z denoted Arg Z is the particular value θ of arg Z that satisfies $-\pi < \theta \le \pi$.
- The principal argument of a complex number (excluding zero) is *Unique*.

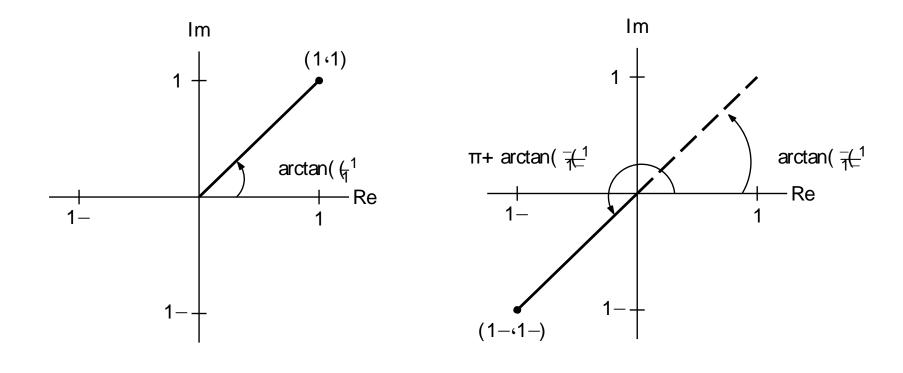
<ロト < 団 > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\mathcal{A} \mathcal{A} \mathcal{A}$



Cartesian form: z = x + jywhere x = Rez and y = Imz Polar form: $z = r(\cos\theta + j\sin\theta) = re^{i\theta}$ where r = |z| and $\theta = \arg z$

- The range of the arctan function is $-\pi/2$ (exclusive) to $\pi/2$ (exclusive).
- Consequently, the **arctan** function always yields an angle in either the first or fourth quadrant.



æ.

.⊒. ►

5900

• The angle θ that a vector from the origin to the point (x, y) makes with the positive x axis is given by $\theta = a \tan 2(y, x)$, where

arctan(
$$y/x$$
) for $x > 0$
 $\pi/2$ for $x = 0$ and $y > 0$
for $x = 0$ and $y < 0$
for $x = 0$ and $y < 0$
for $x = 0$ and $y < 0$
arctan(y/x) + π for $x < 0$ and $y \ge 0$
arctan(y/x) - π for $x < 0$ and $y \ge 0$

- The range of the atan2 function is from $-\pi$ (exclusive) to π (inclusive).
- For the complex number Z expressed in Cartesian form X+ jy
 Arg z = atan2(y, x.(
- Although the atan2 function is quite useful for computing the principal argument (or argument) of a complex number, it is not advisable to memorize the definition of this function. It is better to simply understand what this function is doing (namely, intelligently applying the arctan function.(

 $\mathcal{A} \subset \mathcal{A}$

• Let Z be a complex number with the Cartesian and polar form representations given respectively by

$$Z = X + jY$$
 and $Z = I \Theta^{\theta}$.

• To convert from *polar to Cartesian* form, we use the following identities:

 $x = r \cos \theta$ and $y = r \sin \theta$.

• To convert from *Cartesian to polar* form, we use the following identities: $r = \frac{1}{x^2 + y^2}$ and $\theta = atan2(y, x) + 2\pi k^{\alpha}$

where k is an arbitrary integer.

Since the atan2 function simply amounts to the intelligent application of the arctan function, instead of memorizing the definition of the atan2 function, one should simply *understand* how to use the arctan function to achieve the same result.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

For complex numbers, addition and multiplication are *commutative*. That is, for any two complex numbers Z₁ and Z₂

$$Z_1 + Z_2 = Z_2 + Z_1$$
 and
 $Z_1 - Z_2 = Z_2 - Z_1$

For complex numbers, addition and multiplication are *associative*. That is, for any two complex numbers Z₁ and Z₂

$$(2i + 2i) + 2i = 2i + (2i + 2i)$$
 and
 $(2i - 2i) - 2i = 2i - (2i - 2i)$

For complex numbers, the *distributive* property holds. That is, for any three complex numbers Z₁, Z₂, and Z₃

$$\mathcal{A}(\mathcal{Z}+\mathcal{Z})=\mathcal{A}\mathcal{Z}+\mathcal{A}\mathcal{Z}_3$$

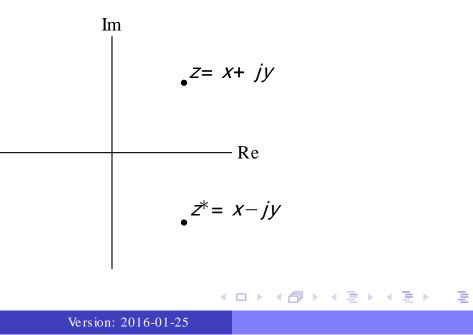
<ロト < 団ト < 団ト < 団ト = 三目

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

• The conjugate of the complex number Z = X + jy is denoted as Z^* and defined as

$$z^* = x - jy$$

- Geometrically, the conjugation operation reflects a point in the complex plane about the real axis.
- The geometric interpretation of the conjugate is illustrated below.



 $\mathcal{O} \mathcal{Q} \mathcal{O}$

• For every complex number *Z* the following identities hold:

$$|\vec{z}^*| = |\vec{z}|,$$

 $\arg \vec{z}^* = -\arg \vec{z},$
 $\vec{z}\vec{z}^* = |\vec{z}|^2,$
 $\operatorname{Re} \vec{z} = \frac{1}{2}(\vec{z} + \vec{z}^*),$ and
 $\operatorname{Im} \vec{z} = \frac{1}{2j}(\vec{z} - \vec{z}^*).$

• For all complex numbers Z_1 and Z_2 , the following identities hold:

$$(z_1 + z_2)^* = z_1^* + z_2^*$$

 $(z_1 + z_2)^* = z_1^* z_2^*$, and
 $(z_1/z_2)^* = z_1^* z_2^*$

< □ > < □ > < □</p>

æ.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

▶ ◀ Ē ▶

• Cartesian form: Let $z_1 = x_1 + jy_1$ and $z_2 = x_2 + jy_2$. Then,

$$Z_1 + Z_2 = (X_1 + jy_1) + (X_2 + jy_2)$$
$$= (X_1 + X_2) + j(y_1 + y_2).$$

- That is, to add complex numbers expressed in Cartesian form, we simply add their real parts and add their imaginary parts.
- Polar form: Let $Z_1 = r_1 \theta^{i\theta_1}$ and $Z_2 = r_2 \theta^{i\theta_2}$. Then,

$$\begin{aligned} z_1 + z_2 &= r_1 e^{i\theta_1} + r_2 e^{i\theta_2} \\ &= (r_1 \cos\theta_1 + jr_1 \sin\theta_1) + (r_2 \cos\theta_2 + jr_2 \sin\theta_2) \\ &= (r_1 \cos\theta_1 + r_2 \cos\theta_2) + j(r_1 \sin\theta_1 + r_2 \sin\theta_2). \end{aligned}$$

- That is, to add complex numbers expressed in polar form, we first rewrite them in Cartesian form, and then add their real parts and add their imaginary parts.
- For the purposes of addition, it is easier to work with complex numbers expressed in Cartesian form.

• Cartesian form: Let $Z_1 = X_1 + jy_1$ and $Z_2 = X_2 + jy_2$. Then,

$$z_1 z_2 = (x_1 + jy_1)(x_2 + jy_2)$$

= $x_1 x_2 + jx_1 y_2 + jx_2 y_1 - y_1 y_2$
= $(x_1 x_2 - y_1 y_2) + j(x_1 y_2 + x_2 y_1).$

- That is, to multiply two complex numbers expressed in Cartesian form, we use the distributive law along with the fact that $j^2 = -1$.
- Polar form: Let $Z_1 = r_1 \Theta^{i\theta_1}$ and $Z_2 = r_2 \Theta^{i\theta_2}$. Then, $Z_1 Z_2 = r_1 \Theta^{i\theta_1} r_2 \Theta^{i\theta_2} = r_1 r_2 \Theta^{i(\theta_1 + \theta_2)}.$
- That is, to multiply two complex numbers expressed in polar form, we use exponent rules.
- For the purposes of multiplication, it is easier to work with complex numbers expressed in polar form.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

• Cartesian form: Let $z_1 = x_1 + jy_1$ and $z_2 = x_2 + jy_2$. Then,

$$\frac{z_1}{z_2} = \frac{z_1 z_2^*}{z_2 z_2^*} = \frac{z_1 z_2^*}{|z_2|} = \frac{x_1 z_2^*}{|z_2|} = \frac{x_1 + jy_1(x_2 - jy_2)}{x_1 + jy_2}$$

$$= \frac{x_1 x_2 - jx_1 y_2 + jx_2 y_1 + jy_1 y_2}{\text{to compute x^2 the y^2 uotient of two complex nux y^2 + j(x_2 y_1 - x_1)(2)}{\text{complex nux y^2 + ry 2}}$$

$$= \frac{x_1 x_2 + jy_1 y_2 + j(x_2 y_1 - x_1)(2)}{\text{complex nux y^2 + ry 2}}$$

$$= \frac{x_1 x_2 + jy_1 y_2 + j(x_2 y_1 - x_1)(2)}{\text{complex nux y^2 + ry 2}}$$

• *Polar form:* Let $Z_1 = I_1 \Theta^{i\theta_1}$ and $Z_2 = I_2 \Theta^{i\theta_2}$. Then.

0

$$\frac{Z_1}{Z_2} = \frac{r_1 e^{j\theta_1}}{r_2 e^{j\theta_2}} = \frac{r_1}{r_2} e^{j(\theta_1 - \theta_1)}$$

- That is, to compute the quotient of two complex numbers expressed in polar form, we use exponent rules.
- For the purposes of division, it is easier to work with complex numbers expressed in polar form.

 $\mathcal{O}\mathcal{A}\mathcal{O}$

• For any complex numbers Z_1 and Z_2 , the following identities hold:

$$\begin{vmatrix} z_1 z_2 \end{vmatrix} = \begin{vmatrix} z_1 \end{vmatrix} \begin{vmatrix} z_2 \end{vmatrix},$$

$$\begin{vmatrix} z_1 z_2 \end{vmatrix} = \begin{vmatrix} z_1 z_1 \\ z_2 \end{vmatrix} \quad \text{for } z_2 j = 0$$

$$arg z_1 z_2 = arg z_1 + arg z_2, \text{ and}$$

$$arg \frac{z}{z_2} = arg z_1 - arg z_2 \quad \text{for } z_2 \neq 0.0$$

• The above properties trivially follow from the polar representation of complex numbers.

æ.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

▶ ∢ ≣ ▶ ...

••••••••••••••••••••••••••••••••••••

• Euler's relation. For all real θ ,

$$e^{i\theta} = \cos\theta + i\sin\theta.$$

• From Euler's relation, we can deduce the following useful identities:

$$\cos\theta = \frac{1}{2}(e^{i\theta} + e^{-i\theta}) \text{ and}$$
$$\sin\theta = \frac{1}{2i}e^{i\theta} - e^{-i\theta}.$$

• De Moivre's theorem. For all real θ and all *integer n*, $\theta^{in\theta} = \begin{pmatrix} 0 & 0 \\ \theta^{i\theta} & 0 \end{pmatrix}$.

[Note: This relationship does not necessarily hold for real n.]

æ

 $\mathcal{A} \subset \mathcal{A}$

• Every complex number $Z = r e^{i\theta}$ (where r = |z| and $\theta = \arg z$) has *n* distinct *nth roots* given by

$$\sqrt[n]{r}e^{i(\theta+2\pi k)/n}$$
 for $k = 0, 1, ..., n-1$.

• For example, 1 has the two distinct square roots 1 and -1.

Version: 2016-01-25

æ.

590

< ∃ >

• Consider the equation

where a, b, and C are real, Z is complex, and $a \neq 0$.

• The roots of this equation are given by

$$z = \frac{-b \pm b^{-2} 4ac}{2a}.$$

- This formula is often useful in factoring quadratic polynomials.
- The quadratic $az^2 + bz + c$ can be factored as $a(z-z_0)(z-z_1)$, where

$$z^{-} = \frac{b - \sqrt{b^{2} - 4ac}}{2a}$$
 and $z = \frac{b + \sqrt{b^{2} - 4ac}}{2a}$.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$